Corrigé du baccalauréat S Amérique du Sud novembre 2005

EXERCICE 1 4 points

Commun à tous les candidats

Partie A

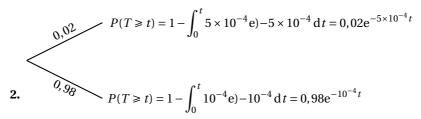
1. On a une loi de Bernoulli de paramètres p = 0.02 et n = 50. On a donc $p(X = 2) = {50 \choose 2} \times 0.02^2 \times 0.98^{48} \approx 0.185 \ 8 \approx 0.19$.

- **2.** La probabilité cherchée est $p(X > 0) = 1 p(X = 0) = 1 0.98^{50} \approx 0.635 \approx 0.64$.
- **3.** On a $E(X) = n \times p = 50 \times 0,02 = 1.$

Partie B

1. **a.** On a
$$P([1\ 000\ ; +\infty]) = 1 - \int_0^{1000} 5 \times 10^{-4} e^{10^{-4}} dt = 1 + \left[e^{-5 \times 10^{-4}} \right]_0^{1000} = e^{-5 \times 10^{-4} \times 10^3} = e^{-0.5} = \frac{1}{\sqrt{e}} \approx 0,606 \approx 0,61.$$

b. Même calcul avec
$$\lambda_2: P([1\ 000\ ;\ +\infty]) = 1 - \int_0^{1000} 10^{-4} \mathrm{e}^{10^{-4}} \, \mathrm{d}t = 1 + \left[\mathrm{e}^{-10^{-4}} \right]_0^{1000} = \mathrm{e}^{10^{-4} \times 10^3} = \mathrm{e}^{-0.1} \approx 0,904 \approx 0,90.$$



D'où en faisant la somme, le résultat demandé.

3. On a
$$P_{T \ge 100}$$
 (défectueux) =
$$\frac{P[(T \ge 1000) \cap P(\text{défectueux})]}{P(T \ge 1000)} = \frac{0.02 \times \text{e}^{-0.5}}{0.02 \times \text{e}^{-0.5} + 0.98 \times \text{e}^{-10^{-1}}} \approx 0.013 \approx 0.01.$$

EXERCICE 2 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

1. Un point M(z) est invariant si et seulement si $z' = z = \frac{4}{\overline{z}} \iff z\overline{z} = 4 \iff$

Les points invariants sont donc tous les points dont l'affixe a pour module 2; le cercle de centre O et de rayon 2 est donc invariant par f.

2. On a $z' = 1 = \frac{4}{\overline{z}} \iff \overline{z} = 4 \iff z = 4$. Le seul point dont l'image par f est J est le point d'affixe 4.

3. Si
$$\alpha = a + ib \neq 0$$
 a un antécédent z par f , alors $a + ib = \frac{4}{x + iy} \iff (a + ib)(x + iy) = 4 \iff \begin{cases} ax + by = 4 \\ bx - ay = 0 \end{cases} \iff \begin{cases} x = \frac{4a}{a^2 + b^2} \\ y = \frac{4b}{a^2 + b^2} \end{cases}$

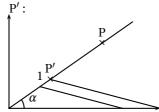
Conclusion : le seul antécédent de α par f est le complexe $z = \frac{4\alpha}{|\alpha|^2}$

- **4. a.** On a d'après la définition de f et en prenant les arguments : $\left(\overrightarrow{u}, \overrightarrow{OM'}\right) = 0 \|eft[-\left(\overrightarrow{u}, \overrightarrow{OM}\right) = \left(\overrightarrow{u}, \overrightarrow{OM}\right); \operatorname{donc}\left(\overrightarrow{OM}, \overrightarrow{OM'}\right) = 0$ modulo 2π . Autrement dit : les points O, M et M' sont alignés.
 - **b.** On a $|z'| = \left|\frac{4}{\overline{z}}\right| = \frac{4}{|\overline{z}|} = \frac{4}{|z|}$.

Donc si |z| = r > 0, alors $|z'| = \frac{4}{r}$.

L'image du cercle de centre O et de rayon r est donc le cercle de centre O et de rayon $\frac{4}{r}$. D'après la question précédente à chaque point du premier cercle correspond un point image aligné avec O : conclusion, l'image du cercle est tout le cercle de centre O et de rayon $\frac{4}{r}$.

c. Si OP = 3, $z_P = 3e^{i\alpha}$ et $z_{P'} = \frac{4}{3}(\cos\alpha + i\sin\alpha)$. D'où une construction de



5. Si $M(z) \in \mathcal{C}_1(J; r = 1)$, alors $z = 1 + e^{i\alpha}$, $\alpha \neq \pi$, d'où $z' = \frac{4}{1 + \cos \alpha - i\sin \alpha} = \frac{4(1 + \cos \alpha + i\sin \alpha}{1 + \cos \alpha)^2 + \sin^2 \alpha} = \frac{4(1 + \cos \alpha + i\sin \alpha)}{2 + 2\cos \alpha} = 2 + i\frac{2\sin \alpha}{1 + \cos \alpha}$.

Conclusion : le point M' a une abscisse égale à 2. Il appartient à la droite (D) d'équation x=2.

Exercice 2 5 points

Candidats ayant suivi l'enseignement de spécialité

1. On sait que l'écriture de la similitude s est $z' = \alpha z + \beta$, avec α et β complexes. Or s(A) = B et s(C) = D se traduit par :

$$\begin{cases} 1+2\mathrm{i} &= \alpha\mathrm{i}+\beta\\ 3+2\mathrm{i} &= \alpha\sqrt{2}\left(\frac{\sqrt{2}}{2}+\mathrm{i}\frac{\sqrt{2}}{2}\right)+\beta \end{cases} \iff \begin{cases} 2 &= \alpha\\ 1+2\mathrm{i} &= 2+b \end{cases} \iff \begin{cases} 2 &= \alpha\\ 1 &= \beta \end{cases}$$

L'écriture complexe de *s* est donc : z' = 2z + 1.

On trouve aussitôt que le seul point fixe est le point d'affixe -1, donc le centre de cette similitude.

 $z'=2z+1 \iff z'+1=2z+2 \iff z'+1=2(z+1)$. On reconnaît une homothétie dont le centre est le point d'affixe -1 et de rapport 2.

- **2.** On peut écrire $1U_{n+1} 2U_n = 1$ ce qui montre d'après le théorème de Bezout que U_n et U_{n+1} sont premiers entre eux.
- **3.** *s* étant une homothétie de rapport 2, les termes (naturels) de la suite sont les affixes des points obtenus successivement en prenant les symétriques du point d'affixe −1 autour du point précédent.
- 4. Démonstration par récurrence :

Initialisation : $U_0 = 2^0 - 1 = 0$: vrai.

Hérédité : supposons que la relation soit vraie pour le naturel n : $U_n = 2^n - 1$. Alors $U_{n+1} = 2U_n + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 2 + 1 = 2^{n+1} - 1$. La relation est vraie au rang (n + 1). Elle est donc vraie pour tout naturel n.

5. Calculons $U_p(U_{n-p}+1)+U_{n-p}=(2^p-1)(2^{n-p}-1+1)+2^{n-p}=2^n-2^{n-p}+2^{n-p}-1=2^n-1=U_n.$

L'égalité précédente peut s'écrire : $U_n - U_p(U_{n-p} + 1) = U_{n-p}$.

Le pgcd à U_n et U_p , divise U_p , donc aussi $U_p\left(U_{n-p}+1\right)$ et par différence divise $U_n-U_p\left(U_{n-p}+1\right)$ c'est-à-dire U_{n-p} et c'est le plus grand diviseur commun. Donc $\operatorname{pgcd}(U_n,\,U_p)=\operatorname{pgcd}(U_p,\,U_{n-p})$.

6. On sait que pour $x \in \mathbb{R}$ et $a \in \mathbb{N}$, $x^a - 1 = (x - 1)(...)$, donc x - 1 divise $x^a - 1$. Soit d le pgcd de U_n et U_p . Il existe donc deux naturels k et k' premiers entre eux tels que n = kd et p = k'd.

De plus il n'existe pas d'autre écriture de n et p sous forme de produit avec un facteur commun supérieur à d, d'après la définition du pgcd.

$$U_n = 2^n - 1 = 2^{kd} - 1 = (2^d)^k - 1 = (2^d - 1)(...)$$
, c'est-à-dire que $2^d - 1$ divise U_n .
De même $U_p = 2^p - 1 = 2^{k'd} - 1 = (2^d)^{k'} - 1 = (2^d - 1)(...)$, c'est-à-dire que $2^d - 1$ divise U_n .

Donc $2^{d'} - 1 = U_d = U_{\text{pgcd}(n, p)}$ est le plus grand diviseur commun à U_n et U_p . Application : $15 = 3 \times 5$. Or 5 divise 2 005, mais 3 ne le divise pas. Donc $\text{pgcd}(U_{2\ 005},\ U_5) = U_5$ (d'après la question précédente). $U_5 = 2^5 - 1 = 32 - 1 = 31$.

Conclusion: $pgcd(U_{2 \ 005}, U_5) = 31.$

Exercice 1 4 points

Commun à tous les candidats

- **1.** V (voir 2)
- 2. $V \operatorname{car} \overrightarrow{AC} \cdot \overrightarrow{AI} = \overrightarrow{AB} \cdot \overrightarrow{AI} = \overrightarrow{AI} \cdot \overrightarrow{AB} = 1 \times \frac{1}{2}$
- 3. $V \operatorname{car} \overrightarrow{AB} \cdot \overrightarrow{IJ} = \overrightarrow{AB} \cdot \overrightarrow{IC}$ (par projection sur le plan (ABC))
- 4. F, car $\widehat{BIC} = \frac{1}{0.5} = 2 \neq \tan \frac{\pi}{3}$.
- 5. F: une équation paramétrique de la droit (IJ) est $\begin{cases} x = \frac{1}{2} + t \\ y = 2t \\ z = t \end{cases}$
- **6.** V en écrivant une équation de la droite (J, \overrightarrow{JI}) .
- 7. F: c'est une équation de plan.
- **8.** F
- **9.** V: une équation du plan (FIJ) est: 4x y 2z = 2.
- **10.** V: en prenant la base (EFI) et la hauteur CB, on a $\mathscr{A}(EFI) = \frac{1 \times 1}{2} = \frac{1}{2}$. Donc V(EFIJ) = $\frac{1}{3} \times \frac{1}{2} \times 1 = \frac{1}{6}$.

EXERCICE 4 7 points

Commun à tous les candidats

Partie A

- 1. On a f(0) = 1 et g(0) = 0, ce qui permet de distinguer \mathcal{C}_f et \mathcal{C}_g .
- **2.** $f(-x) = e^{-(-x)^2} = e^{-x^2} = f(x)$; f étant définie sur un intervalle symétrique autour de 0 est donc paire. $g(-x) = (-x)^2 e^{-(-x)^2} = x^2 e^{-x^2} = g(x)$; pour les mêmes raisons la fonction g est paire.
- **3.** Dérivée : $f'(x) = -2xe^{-x^2}$ qui est signe de -x : donc f est croissante sur \mathbb{R}_- et décroissante sur \mathbb{R}_+ .

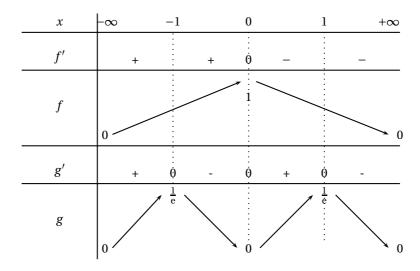
En posant $x^2 = X$, on a $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$.

De même pour g, $g'(x) = e^{-x^2}(2x - 2x^3) = 2xe^{-x^2}(1 - x^2)$, qui est du signe de

$$x(1-x^2)$$

On sait que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, donc que $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. La limite est identique au

On obtient les tableaux de variations suivants :



- **4.** Soit $d(x) = f(x) g(x) = e^{-x^2} (1 x^2)$ qui est du signe de $1 x^2$, donc positive sur [-1; 1], négative ailleurs. Conclusion :
 - Sur [-1; 1], $f(x) \ge g(x)$, donc \mathcal{C}_f est au dessus de \mathcal{C}_g ;
 - Sur] ∞ ; –1[\mathscr{C}_f est au-dessous de \mathscr{C}_g .

Partie B

- 1. f étant dérivable donc continue, G est la primitive de la fonction g qui s'an-
- **2.** Pour x >, G(x) représente en unités d'aire, l'aire de la surface limitée par l'axe des abscisses, la courbe \mathcal{C}_g et les droites d'équations, X = 0 et X = x.
- **3.** On a par définition G'(x) = g(x) et d'après la question 3 de la partie A, $g(x) \ge 0$ sur \mathbb{R} . La fonction G est donc croissante sur \mathbb{R} .

4. Les fonctions
$$t$$
 et te^{-t^2} étant dérivables, on peut intégrer $G(x)$ par parties.

Posons
$$\begin{cases}
u = -\frac{t}{2} & dv = -2te^{-t^2} \\
du = -\frac{1}{2} & v = e^{-t^2}
\end{cases}$$
D'où $G(x) = \left[-\frac{t}{2}e^{-t^2}\right]_0^x + \frac{1}{2}\int_0^x e^{-t^2} dt = -\frac{x}{2}e^{-x^2} + \frac{1}{2}F(x)$, d'où enfin
$$G(x) = \frac{1}{2}\left[F(x) - xe^{-x^2}\right].$$

- **a.** Soit $\ell = \lim_{x \to +\infty} F(x)$. Toutes les fonctions de l'égalité précédente étant continues, on peut en déduire à la limite que $\lim_{x \to +\infty} G(x) = \frac{\ell}{2}$.
 - **b.** N = $\int_0^1 e^{-t^2} dt \int_0^1 t^2 e^{-t^2} dt = F(1) G(1)$. N représente donc l'aire de la surface limitée par les droites x = 0, x = 1, et les deux courbes \mathscr{C}_f et \mathscr{C}_g
 - **c.** N' est l'aire de la surface en gris clair et ℓ est l'aire de la surface hachurée. On voit graphiquement que N > $\frac{\ell}{2}$.

